Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
EBioMedicine ; 70: 103485, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1322072

ABSTRACT

Background Older age is the most powerful risk factor for adverse coronavirus disease-19 (COVID-19) outcomes. It is uncertain whether leucocyte telomere length (LTL), previously proposed as a marker of biological age, is also associated with COVID-19 outcomes. Methods We associated LTL values obtained from participants recruited into UK Biobank (UKB) during 2006-2010 with adverse COVID-19 outcomes recorded by 30 November 2020, defined as a composite of any of the following: hospital admission, need for critical care, respiratory support, or mortality. Using information on 130 LTL-associated genetic variants, we conducted exploratory Mendelian randomisation (MR) analyses in UKB to evaluate whether observational associations might reflect cause-and-effect relationships. Findings Of 6775 participants in UKB who tested positive for infection with SARS-CoV-2 in the community, there were 914 (13.5%) with adverse COVID-19 outcomes. The odds ratio (OR) for adverse COVID-19 outcomes was 1·17 (95% CI 1·05-1·30; P = 0·004) per 1-SD shorter usual LTL, after adjustment for age, sex and ethnicity. Similar ORs were observed in analyses that: adjusted for additional risk factors; disaggregated the composite outcome and reduced the scope for selection or collider bias. In MR analyses, the OR for adverse COVID-19 outcomes was directionally concordant but non-significant. Interpretation Shorter LTL is associated with higher risk of adverse COVID-19 outcomes, independent of several major risk factors for COVID-19 including age. Further data are needed to determine whether this association reflects causality. Funding UK Medical Research Council, Biotechnology and Biological Sciences Research Council and British Heart Foundation.


Subject(s)
COVID-19/virology , Leukocytes/pathology , SARS-CoV-2/genetics , Telomere/genetics , Aged , Biological Specimen Banks , COVID-19/pathology , Cohort Studies , Female , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Risk Factors , United Kingdom
2.
Nat Med ; 27(4): 668-676, 2021 04.
Article in English | MEDLINE | ID: covidwho-1174686

ABSTRACT

Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2, P = 1.6 × 10-6; IFNAR2, P = 9.8 × 10-11 and IL-10RB, P = 2.3 × 10-14) using cis-expression quantitative trait loci genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared expression quantitative trait loci signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.


Subject(s)
COVID-19/genetics , Drug Repositioning , Mendelian Randomization Analysis/methods , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Genome-Wide Association Study , Humans , Interleukin-10 Receptor beta Subunit/genetics , Interleukin-10 Receptor beta Subunit/physiology , Quantitative Trait Loci , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/physiology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL